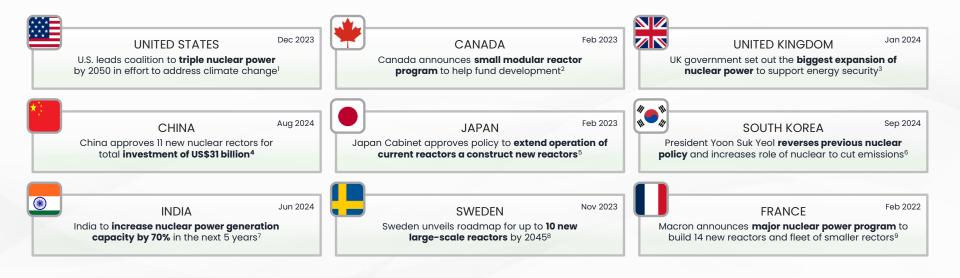


TSXV: SASK FRA: X5U OTCQB: SASKF

# Nuclear in the New Industrial Revolution




## Nuclear in the New Industrial Revolution

## Nuclear energy is being embraced internationally as the cornerstone of a carbon-free energy future

Climate Change & Decarbonization Goals

Increasing Importance of Energy Security Positive Shift in Public Perception



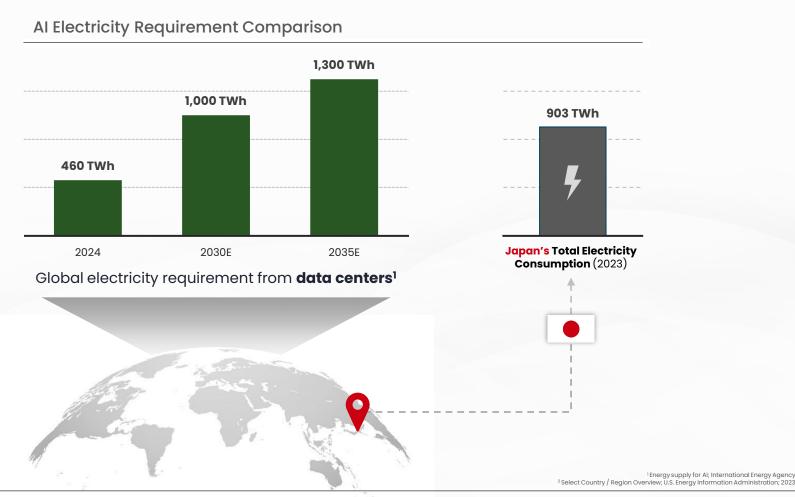
<sup>1</sup>U.S. leads coalition to triple nuclear power by 2050 in effort to address climate change; CNBC <sup>2</sup> Canada Launches New Small Modular Reactor Funding Program; Government of Canda <sup>3</sup> Biggest expansion of nuclear power for 70 years to create jobs, reduce bills and strengthen Britain's energy security; Govuk

<sup>4</sup>China Makes \$31 Billion Nuclear Push With Record Approvals; BNN <sup>5</sup> Cabinet approves change in Japanese nuclear policy; WNN <sup>6</sup>In New Nuclear Push, South Korea Revives Plans to Build Two Reactors Time Magazine <sup>7</sup> June 25, 2024 Press Release; Department of Atomic Energy <sup>8</sup> Sweden plans 'massive' expansion of nuclear energy; WNN <sup>9</sup> France Announces Major Nuclear Power Buildup; New York Times



## New Paradigm for Nuclear Energy

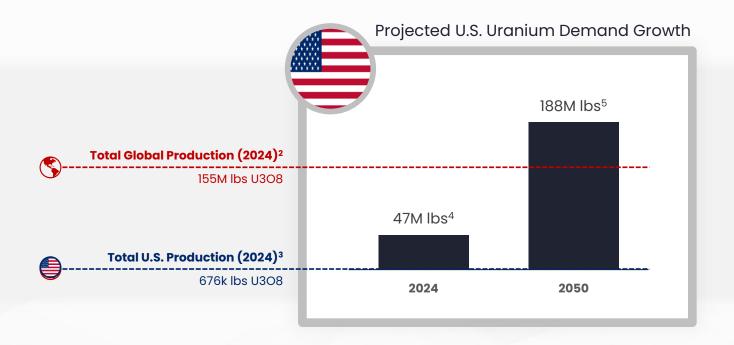
## Nuclear Power Investment


Surging capital inflows signal strong conviction in the future of nuclear power and further need to strengthen supply





## The Al Electricity Demand Shock


#### Artificial intelligence is a major shock to global electricity demand



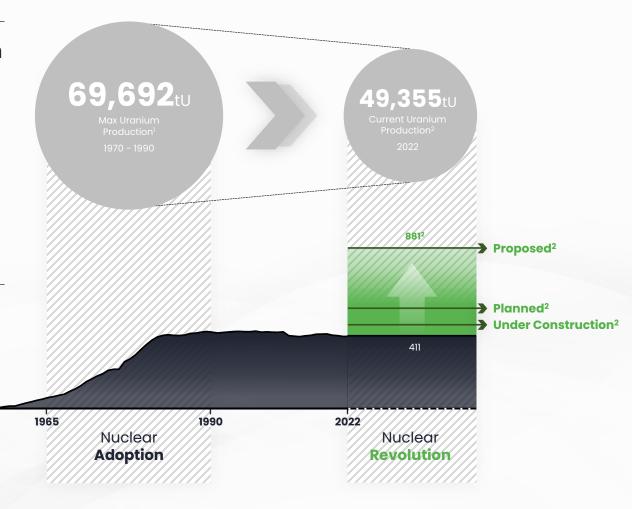


### The U.S. Needs Uranium

The White House has established policy aimed to **quadruple nuclear** capacity by 2050, driven by extensions, expansions, and SMRs<sup>1</sup>



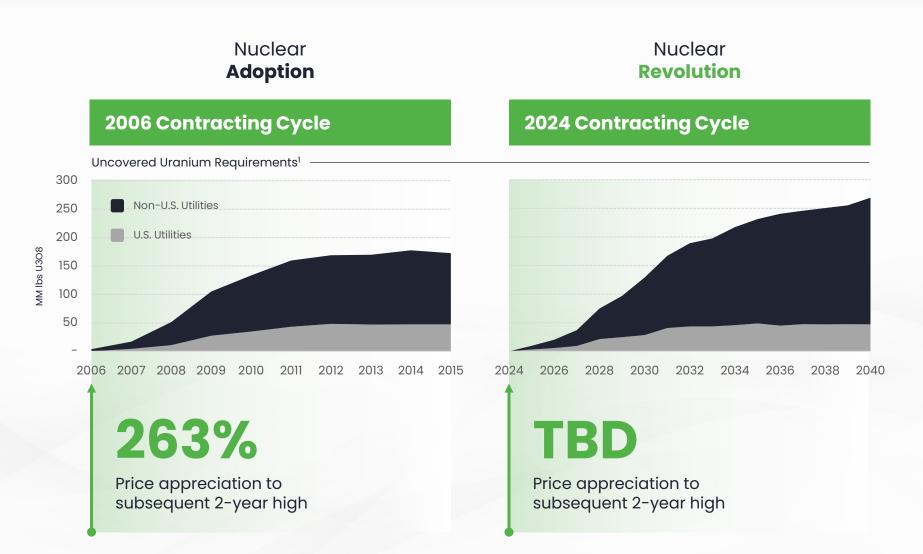
The U.S. needs to source nearly 141M lbs of additional annual supply by 2050




## A Multigenerational Inflection Point

Global uranium production levels remain below the amount produced during initial **nuclear adoption** 

The current **nuclear revolution** suggests a
pressing need to expand
uranium supply


Nuclear Reactors by Year (1954 – 2022)<sup>3</sup>



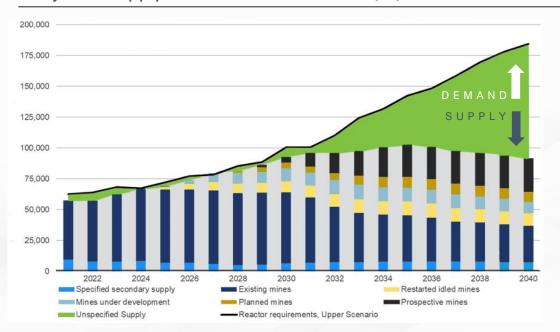
<sup>1</sup>Forty Years of Uranium Resources, Production and Demand in Perspective; The Red Book Retrospective; Nuclear Energy Agency <sup>2</sup>World Nuclear Association; Proposed, Planned, and Under Construction added to 41 Current reactors <sup>3</sup>Nuclear Power Reactors in the World; IAEA



## **Upcoming Contracting Cycle**



<sup>1</sup>The Uranium Market Outlook, Executive Summary; UxC




## Supply & Demand Profile

Growing supply deficit calls for 5 new Rook I sized projects to be found, permitted, financed, and constructed over the next 20 years

#### Current mine supply has never been more fragile

#### Projected Supply and Demand of Uranium (tU)1



Demand for uranium is expected to rise by

127% by 2030

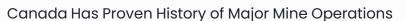
and

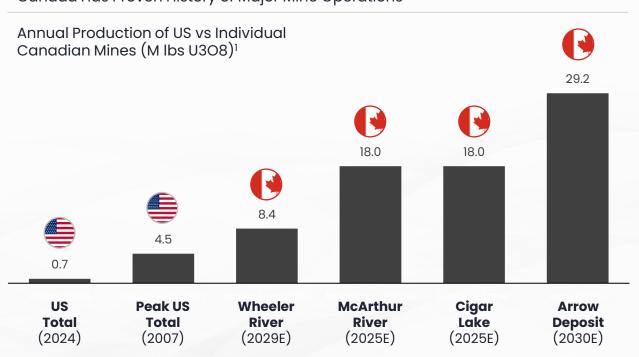
200% by 2040

Creating a ~240M lbs deficit in 2040 that will continue to widen<sup>1</sup>

<sup>1</sup> The World Nuclear Fuel Report <sup>2</sup> OECD Uranium 2022, Resources, Production, Demand



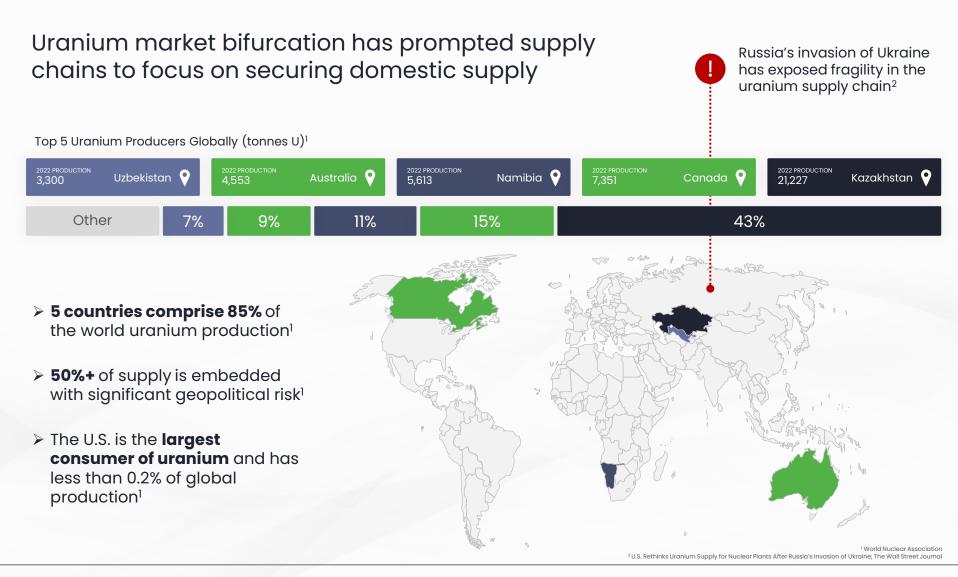

## **Uranium Price Environment**






## Canada: A Proven Uranium Jurisdiction

# Canada is the clear solution to pursue North America's next nuclear fuel source






<sup>1</sup>Public company repor



## Production Overview By Country





## Production Overview By Producer

## The **top 3 global producers** account for nearly half of global production and are facing production challenges

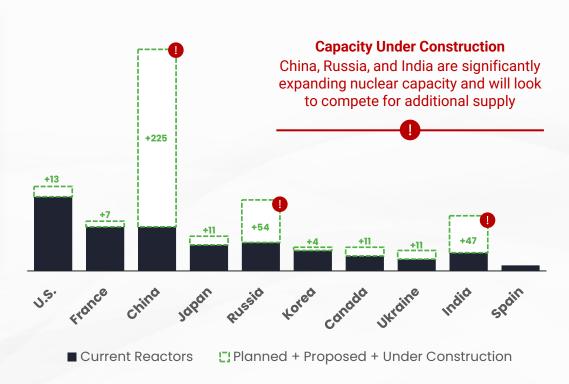


<sup>1</sup>World Nuclear Association; Uranium production by company 2022 <sup>2</sup>Kazatomprom 4Q23 Operations and Trading Update; February I, 2024 <sup>3</sup>Kazatomprom 1H24 Financial Results and 2025 Production Plan Update; August 23, 2024

<sup>4</sup> Cameco Annual Report 2023 <sup>5</sup> Cameco Production and Market Update; September 5, 2023 <sup>6</sup>Le Monde; Niger's junta evicts French multinational Orano from one of its largest uranium deposits; June 22, 2024 <sup>7</sup>Kazatomprom corporate release; July 10, 2024



## Growing International Supply Competition


## The U.S. relies heavily on international markets for uranium supply but securing supply may become increasingly difficult

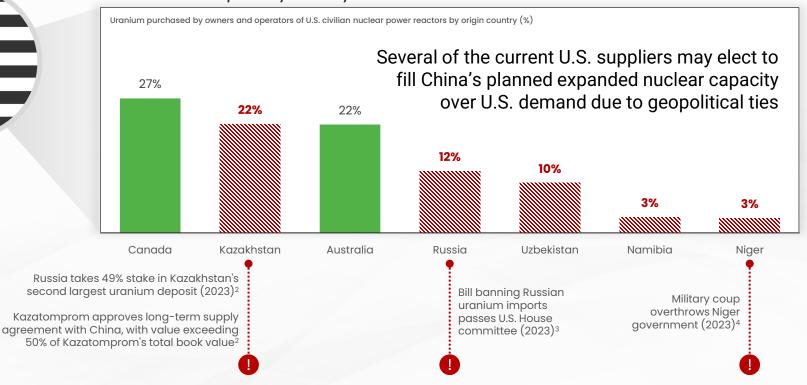
#### Nuclear Reactors by Country<sup>1</sup>

Nuclear capacity by country (Reactors)

The **U.S.** Is the largest global uranium consumer but accounts for less than 0.2% of global uranium production<sup>2</sup>

Susceptible to supply shocks




<sup>1</sup>International Atomic Energy Agency, Power Reactor Information System



## U.S. Supply Dynamics

## Over 50% of U.S. supply is sourced from countries with significant geopolitical and supply chain risks

#### U.S. Uranium Imports by Country<sup>1</sup>



<sup>1</sup>U.S. Energy Information Administration; Uranium Marketing Annual Report; 2023 data <sup>2</sup> Uranium: Kazatomprom's Major Deals With CNNC and Rosatom; Energy Intelligence; 2023

<sup>3</sup> Bill banning uranium imports from Russia passes US House subcommittee; Reuters <sup>4</sup> Niger arrests politicians after coup, other juntas voice support; Reuters

#### ATHA ENERGY CORF

### The Future is Nuclear

## Energy of the future will be clean, scalable, baseload capable, and secure



#### **Emission-Free**

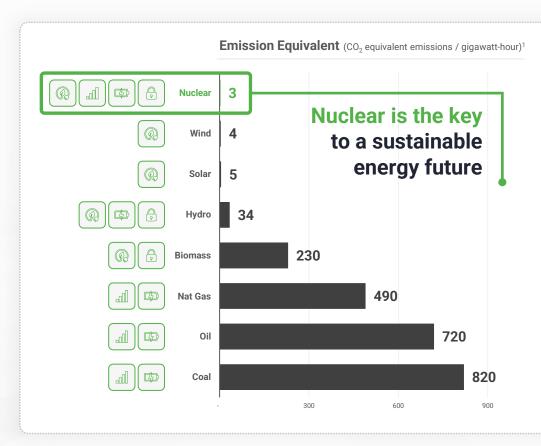
As the lowest CO<sub>2</sub> energy option, nuclear is the best choice for governments looking to achieve their stated climate objectives.<sup>1</sup>



#### **Mass Scale**

Uranium's unmatched energy density allows nuclear energy production to provide primary energy production with minimal footprint.<sup>2</sup>




#### **Baseload Capacity**

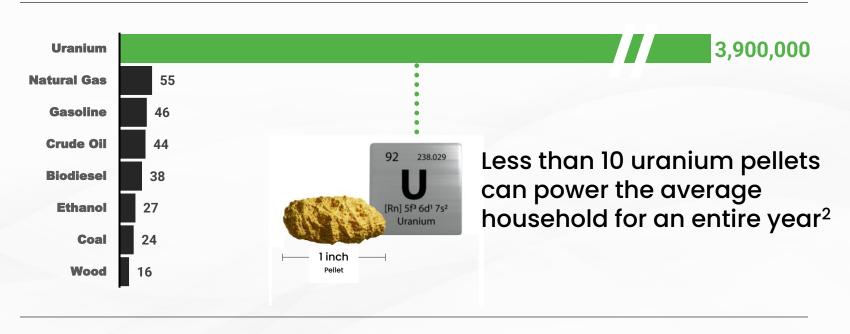
Nuclear is the only clean energy source capable of providing reliable baseload electricity to supplement intermittency of renewables.<sup>2</sup>



#### **Stable Supply**

Uranium accounts for a minor proportion of total generating costs, insulating countries from major price swings or supply disruptions.<sup>3</sup>




<sup>1</sup>Our World in Data; U.S. Department of Energy <sup>2</sup>The Nuclear Fuel Report; 2021 <sup>3</sup>World Nuclear Association



## Uranium's Energy Density

Uranium's unique energy density enables nuclear power to generate vast amounts of electricity with relatively small quantities of fuel, reducing the logistical and environmental burden compared to fossil fuels

#### Energy Density by Fuel Source (MJ/kg)1



<sup>1</sup> L Hore-Lacy, "Future Energy Demand and Supply," in Nuclear Energy in the 21st Century, 2nd ed., London, UK: WNUP, 2011, ch.1, sec.6, pp.9

<sup>2</sup> Mining.com; The power of a uranium pellet

#### ATHA ENERGY CORF

## Additional Resources

#### U.S. Department of Energy

• Restoring America's Competitive Nuclear Energy Advantage

### International Atomic Energy Agency

Energy, Electricity and Nuclear Power Estimates for the Period up to 2050

#### U.S. Energy Information Administration

2023 Uranium Marketing Annual Report



## Fundamental Supply Factors

#### **Supply Deficits**

- Underinvestment in exploration and mine development during 2014-2020¹
- Strategic reserve and mine depletion
- Secondary supply drawn down
- Bottlenecks in fuel services
- Idled mines face challenged restarts

#### Geopolitical Risk

- Geopolitical Risk
- Prohibiting Russian Uranium Imports Act
- Nationalization
- Unprecedented conflict
- Highly concentrated supply chains
- Trade and logistic challenges
- Bifurcating markets

#### Supply Landscape

- > Supply Landscape
- > U3O8 supply ~130M lbs./yr1
- Structural primary deficit ~60M lbs./yr²
- Mobility of supply issues
- Producers contracted for 5+ years, limiting access
- Uranium supply will need to triple by 2050³ to meet the growing demand

<sup>1</sup>2023. Q2 Goehring and Rozencwajg Market Commentary / World Nuclear Association / TradeTech / UxC <sup>2</sup> WNA - World Nuclear Fuel Report 2023 - Upper Case scenario <sup>3</sup> OFCD Uranjum 2022. Resources, Production, Demand



## Fundamental Demand Factors

#### **Demand Shocks**

- Extensions / Refurbishments
- Closure U-turns
- > Capacity Increases
- Physical Trusts
- Small Modular Reactors
- Procurement of uranium, LEU and HALEU for strategic reserves

#### **Government Policies**

- COP28 triple nuclear capacity pledge by 2050
- EU Net Zero Industry Act & Great British Nuclear
- ADVANCE Act
- Japanese Green Transformation
- > China 5-year Plan

#### **Industry Growth**

- > U3O8 Demand ~190M lbs./yr1
- ~60 reactors are under construction, an additional 110 planned<sup>2</sup>
- Doubling of nuclear capacity expected by 2050<sup>3</sup>
- Conversion of coal facilities to nuclear
- Al development & Electrification

<sup>1</sup>2023. Q2 Goehring and Rozencwajg Market Commentary / World Nuclear Association / TradeTech / UxC <sup>2</sup>WNA - World Nuclear Fuel Report 2023 - Upper Case scenario <sup>3</sup>OECD Uranium 2022, Resources, Production, Demand